Answer :
See John Bentley (1986) Programming Perls Addison Wesley for discussion of various implementations, ranging from brute force, O(n^3), solution which remembers previous sums O(n^2), divide and conquer O(n log(n)) and the linear approach. The book can be downloaded here
See also : V.V. Muniswamy in Design And Analysis Of Algorithms
The below code in python uses the technique described in Muniswamy and Bentley above, using dynamic programming and runs in linear time:
a = [31, -41, 59, 26, -53, 58, 97, -93, -23, 84] def linear_method2(): maxsofar = 0 maxhere = 0 for i in range(0, len(a)): maxhere = max(maxhere + a[i], 0) maxsofar = max(maxsofar, maxhere) print( a[:i+1]) print( 'maxhere %d maxsofar %d ' % (maxhere, maxsofar) ) print( maxsofar) def linear_method1(): # [a] [b] [c] [d] [e] [f] [g] ... # | | | | # L U i-1 i L = 0 # lowerbound of the max subarray U = 0 # upperbound of the max subarray summax = 0 # the current max subarray sum, i.e sum(a[L:U]) sumcur = 0 # the current sum from L to i-1 for i in range(0, len(a) ): # If introducing the next element increases the maximum sum, # then include the element if (a[i]+sumcur) > summax and sumcur>0 : print( ' (a[i]+sumcur) > summax ') U = i sumcur += a[i] summax = sumcur # If the current element cannot be introduced above ( since there are -ve in b/w ), # but current element is greater than max sum so far => start from this point elif a[i] > summax: print( 'a[i] > summax' ) L=i U=i summax = sumcur = a[i] # increase the current sum else: sumcur += a[i] print( 'sumcur %d summax %d L %d U %d Array %s' % (sumcur, summax, L, U, a[L:U+1]) ) print('maxsubarray : %s' % a[L:U+1]) print('sum : %d' % summax) linear_method2() print('------------') linear_method1()
See also : http://en.wikipedia.org/wiki/Maximum_subarray_problem